
www.manaraa.com

sustainability

Article

Topographic Correction of Landsat TM-5 and Landsat
OLI-8 Imagery to Improve the Performance of Forest
Classification in the Mountainous Terrain of
Northeast Thailand

Uday Pimple 1,*, Asamaporn Sitthi 2, Dario Simonetti 3, Sukan Pungkul 4,
Kumron Leadprathom 4 and Amnat Chidthaisong 1

1 The Joint Graduate School of Energy and Environment (JGSEE) and Centre of Excellence on Energy
Technology and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140,
Thailand; amnat_c@jgsee.kmutt.ac.th

2 Department of Geography, Faculty of Social Sciences, Kasetsart University, Bangkok 10900, Thailand;
cherryhihi@gmail.com

3 European Commission, Joint Research Centre, Directorate D-Sustainable Resources-Bio-Economy Unit,
21027 Ispra (VA), Italy; dario.simonetti@jrc.ec.europa.eu

4 Royal Forest Department, 61 Phaholyothin Road, Chatuchak, Bangkok 10900, Thailand;
mr.sukan@gmail.com (S.P.); kumron57@gmail.com (K.L.)

* Correspondence: upimple@gmail.com; Tel.: +66-2-872-9014 (ext. 4112)

Academic Editors: Nabin K. Malakar, Rajan Ghimire, Jhalendra Rijal and Pradeep Wagle
Received: 10 November 2016; Accepted: 9 February 2017; Published: 12 February 2017

Abstract: The accurate mapping and monitoring of forests is essential for the sustainable management
of forest ecosystems. Advancements in the Landsat satellite series have been very useful for various
forest mapping applications. However, the topographic shadows of irregular mountains are major
obstacles to accurate forest classification. In this paper, we test five topographic correction methods:
improved cosine correction, Minnaert, C-correction, Statistical Empirical Correction (SEC) and
Variable Empirical Coefficient Algorithm (VECA), with multisource digital elevation models (DEM)
to reduce the topographic relief effect in mountainous terrain produced by the Landsat Thematic
Mapper (TM)-5 and Operational Land Imager (OLI)-8 sensors. The effectiveness of the topographic
correction methods are assessed by visual interpretation and the reduction in standard deviation
(SD), by means of the coefficient of variation (CV). Results show that the SEC performs best with the
Shuttle Radar Topographic Mission (SRTM) 30 m × 30 m DEM. The random forest (RF) classifier is
used for forest classification, and the overall accuracy of forest classification is evaluated to compare
the performances of the topographic corrections. Our results show that the C-correction, SEC and
VECA corrected imagery were able to improve the forest classification accuracy of Landsat TM-5
from 78.41% to 81.50%, 82.38%, and 81.50%, respectively, and OLI-8 from 81.06% to 81.50%, 82.38%,
and 81.94%, respectively. The highest accuracy of forest type classification is obtained with the newly
available high-resolution SRTM DEM and SEC method.

Keywords: topographic effect; topographic correction; DEM; improved cosine correction; Minnaert;
C-correction; SEC; VECA; Landsat TM-5 and OLI-8; random forest

1. Introduction

Forest mapping and classification are important applications of remote sensing technology [1].
Optical sensor images of moderate resolution (30 m × 30 m) such as those from Landsat Thematic
Mapper (TM)-5 and Operational Land Imager (OLI)-8 are widely used for regional, national and
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local mapping, as well as inventorying forests and forest changes as a result of natural or human
influences [2,3]. Forest mapping and classification accuracy can be affected by several factors, including
the presence of clouds, haze, atmospheric effects, radiometric effects, topographic effects, and geometric
corrections. The mapping and monitoring of forest changes require consistent and radiometrically
stable multi-temporal satellite data, in order to better distinguish actual changes from topographic
effects, since mountain shadows change over time [4]. These topographic effects are a key factor
in correcting multi-temporal data, such as that from Landsat TM-5 and OLI-8. Many methods of
pre-processing Landsat data have been proposed, including geometric correction, correction for noise,
conversion to top of atmosphere reflectance units, absolute atmospheric correction, relative radiometric
normalization, and topographic normalization [5,6]. Pre-processed Landsat imagery is therefore freely
available for various forest mapping applications [5–7], but correction of the topographic effect on
available Landsat TM-5 and OLI-8 products is one issue that has not yet been globally addressed [8].

Forests that are located in irregular mountainous terrain show large variations in the reflected
radiance received by satellite sensors. Slopes facing the Sun receive more light and therefore appear
brighter, with a higher reflectance, than slopes facing away from the Sun [9]. This can cause significant
variation in the reflectance response of similar forest types, in which, for example, shaded areas show
a lower than expected reflectance compared with non-shaded areas [10]. The near infrared (NIR),
shortwave infrared (SWIR) and green channels of Landsat TM-5 and OLI-8 are normally used for the
detection and classification of forest types because of the sensitivity to vegetation. However, the same
type of forest may show different reflectance in the NIR, SWIR, and green channels of Landsat TM-5
and OLI-8, due to the topographic effect caused by shadows in the irregular mountainous terrain
(Figure 1). This topographic effect has been found to be an important factor contributing to variations
in the spectral response of the same type of forest [1,11].

Sustainability 2017, 9, 258 3 of 27 

maps, compared with the ML classifier. Thus, the selection of an appropriate classifier is crucial for 
accurate forest classification [4].  

Figure 1. Effect of irregular mountain terrain on the reflectance of Landsat Thematic Mapper (TM)-5 
and Operational Land Imager (OLI)-8 images (Path/row: 129/050, TM-5: 9 February 1999, OLI-8: 2 
February 2015): (a) Hillshade: the hypothetical illumination of a surface calculated using the Shuttle 
Radar Topography Mission (SRTM) Digital Elevation Model (DEM), the solar zenith, and azimuth 
angles; (b) Hillshade: the hypothetical illumination of a surface calculated using Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model 
(GDEM), the solar zenith, and azimuth angles; (c) false color composite Landsat TM-5 bands 5, 4, and 
3; (d) Landsat TM-5 near infrared (NIR) band 4; (e) false color composite Landsat OLI-8 bands 6, 5, 
and 4; and (f) Landsat OLI-8 NIR band 5. 

Significant advancements have been made in the Landsat satellite series in the last few decades, 
including the launch and operation of Landsat 1–5, 7, and 8 [37]. It is important to study the continuity 
between different sensors of the same Landsat series by considering the major sensor characteristics 
and their behavior with regard to various landforms; this is especially critical in mountainous 
regions, where accessibility is limited. However, topographic corrections of Landsat OLI-8 imagery 
and their impact on forest classifications have not yet been studied. Additionally, the extent to which 
forest classifications could be improved if topographic correction is applied to individual source 
imagery (Landsat TM-5 and OLI-8) and combined with widely used advanced machine learning 
classifiers such as random forest (RF), is not yet known. Machine learning classifiers are of growing 
interest to many researchers because of their non-parametric nature, whilst also providing a way of 
estimating the importance of individual variables in the classification [4,8]. 

The present study aims to assess the effectiveness of the most successful topographic correction 
methods in accurately classifying forests, based on Landsat TM-5 and OLI-8 imagery acquired 
between 1999 and 2015. First, we individually evaluate the performance of five different topographic 
correction methods applied to Landsat TM-5 and OLI-8 data, using freely available multisource 
DEMs (SRTM and ASTER DEM) in the complex mountainous terrain of the Dong Phayayen-Khao 
Yai Forest Complex of Thailand (Figure 2). Then, we demonstrate the influence of these corrected 
images on the overall accuracy of the RF classifier. This approach also enables us to investigate and 

Figure 1. Effect of irregular mountain terrain on the reflectance of Landsat Thematic Mapper (TM)-5
and Operational Land Imager (OLI)-8 images (Path/row: 129/050, TM-5: 9 February 1999, OLI-8:
2 February 2015): (a) Hillshade: the hypothetical illumination of a surface calculated using the Shuttle
Radar Topography Mission (SRTM) Digital Elevation Model (DEM), the solar zenith, and azimuth
angles; (b) Hillshade: the hypothetical illumination of a surface calculated using Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), the
solar zenith, and azimuth angles; (c) false color composite Landsat TM-5 bands 5, 4, and 3; (d) Landsat
TM-5 near infrared (NIR) band 4; (e) false color composite Landsat OLI-8 bands 6, 5, and 4; and
(f) Landsat OLI-8 NIR band 5.
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Several previous works have found that this topographic effect has a significant impact on forest
classifications based on Landsat TM-5 data [12–18]. Many topographic correction methods have been
developed to remove the topographic effects from Landsat TM-5 and OLI-8 imagery, including band
rationing, empirical or semi-empirical techniques, and physical-based approaches [4,10,14,19–24].
The empirical and physical methods depend heavily on the input of topographic data, which was not
possible for many remote areas of the world until the recent global Shuttle Radar Topographic Mission
(SRTM) and Advanced Space-born Thermal Emission and Reflection Radiometers (ASTER) global
DEM (GDEM) products [25]. The topographic correction parameters, such as the Minnaert factor and
the C factor in C-corrections, are dependent on Land Use and Land Cover (LULC) variations, and
influence the topographic correction over larger areas with complex LULC types [26,27]. Szantoni
and Simonetti [5] proposed that the application of topographic corrections with a stratification of
LULC types could yield good results on a larger scale and over complex mountainous topography.
The most successful topographic correction methods in forested areas are the C-correction [10], the
Minnaert correction [18], the Modified Minnaert correction [28], the Statistical Empirical Correction
(SEC) [5,21,26,29] and the Variable Empirical Coefficient Algorithm (VECA) [4,30,31], however
very few studies have compared their effectiveness and overall accuracy with respect to forest
classification [4,11,17,25,31,32].

The most suitable topographic correction method is typically evaluated on a case by case basis,
by comparing the performances of different topographic correction methods [21,33]. Vanonckelen et al. [32]
note that the impact of topographic correction methods on traditional per pixel image classification
has not yet been studied, but summarize several studies that examine the effectiveness of topographic
corrections on land cover classifications in mountainous terrain. Several authors have compared
the supervised Maximum Likelihood (ML) classifier for the most successful topographic correction
methods, and reported a 1%–10% improvement in overall accuracy [12,16,17,31,32,34–36]. Additionally,
Tan et al. [14] and Vanonckelen et al. [17] have applied a Support Vector Machine (SVM) classifier
to topographically corrected imagery, achieving satisfactory accuracy. In contrast, Dorren et al. [11]
found that the object-based classification fails to improve the accuracy of forest type maps, compared
with the ML classifier. Thus, the selection of an appropriate classifier is crucial for accurate forest
classification [4].

Significant advancements have been made in the Landsat satellite series in the last few decades,
including the launch and operation of Landsat 1–5, 7, and 8 [37]. It is important to study the continuity
between different sensors of the same Landsat series by considering the major sensor characteristics
and their behavior with regard to various landforms; this is especially critical in mountainous regions,
where accessibility is limited. However, topographic corrections of Landsat OLI-8 imagery and their
impact on forest classifications have not yet been studied. Additionally, the extent to which forest
classifications could be improved if topographic correction is applied to individual source imagery
(Landsat TM-5 and OLI-8) and combined with widely used advanced machine learning classifiers
such as random forest (RF), is not yet known. Machine learning classifiers are of growing interest to
many researchers because of their non-parametric nature, whilst also providing a way of estimating
the importance of individual variables in the classification [4,8].

The present study aims to assess the effectiveness of the most successful topographic correction
methods in accurately classifying forests, based on Landsat TM-5 and OLI-8 imagery acquired between
1999 and 2015. First, we individually evaluate the performance of five different topographic correction
methods applied to Landsat TM-5 and OLI-8 data, using freely available multisource DEMs (SRTM and
ASTER DEM) in the complex mountainous terrain of the Dong Phayayen-Khao Yai Forest Complex
of Thailand (Figure 2). Then, we demonstrate the influence of these corrected images on the overall
accuracy of the RF classifier. This approach also enables us to investigate and compare the effects of
two DEMs on the topographic correction, as well as on the overall accuracy of forest classification
using Landsat TM-5 and OLI-8 imagery.
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compare the effects of two DEMs on the topographic correction, as well as on the overall accuracy of 
forest classification using Landsat TM-5 and OLI-8 imagery. 

Figure 2. Study area: The Dong Phayayen-Khao Yai Forest Complex. 

2. Study Area and Data Set 

2.1. Study Area 

The study area comprises the Dong Phayayen-Khao Yai Forest Complex, covering five protected 
areas from Khao Yai to the Cambodian border: Khao Yai National Park, Pang Sida National Park, 
Thap Lan National Park, Ta Phraya National Park, and Dong Yai Wildlife Sanctuary [38]. The region 
is an extension of the western part of the Sankamphang mountain range to the southwestern 
boundary of the Nakhon Ratchasima Province plateau (Figure 2). The majority of this site is located 
in Nakhon Ratchasima, but also extends across the Saraburi, Prachinburi and Nakhon Nayok 
Provinces of Thailand. The study area consists of a complex mountainous topography, including the 
peaks of Khao Rom, Khao Lam, Khao Keaw, Khao Sam Yod, Khao Far Pha, Khao Kampang, Khao 
Samor Poon and Khao Kaew, with elevations of 1351, 1326, 1292, 1142, 1078, 875, 805, and 802 meters 
above sea level, respectively [39]. Within this region, the most common forest types of Thailand occur, 
including both evergreen forests (EF) and deciduous forests (DF). As such, the complex topography 
and diverse forest ecosystem in this study area make it ideal for exploring topographic corrections of 
satellite imagery. 

2.2. Landsat Imagery 

The study dataset comprises Landsat TM-5 and OLI-8 images selected from the Land Processed 
Distributed Active Archive Centre (LP DAAC) (Table 1) [40]. Cloud-free images were chosen for this 
study, and only the red, green, blue, NIR, SWIR-1, and SWIR-2 bands of Landsat TM-5 and OLI-8 
were included in the analysis. The image was converted to top-of-atmosphere (TOA) reflectance and 
atmospherically corrected using a dark pixel subtraction method [6]. Further, all images were 

Figure 2. Study area: The Dong Phayayen-Khao Yai Forest Complex.

2. Study Area and Data Set

2.1. Study Area

The study area comprises the Dong Phayayen-Khao Yai Forest Complex, covering five protected
areas from Khao Yai to the Cambodian border: Khao Yai National Park, Pang Sida National Park,
Thap Lan National Park, Ta Phraya National Park, and Dong Yai Wildlife Sanctuary [38]. The region is
an extension of the western part of the Sankamphang mountain range to the southwestern boundary
of the Nakhon Ratchasima Province plateau (Figure 2). The majority of this site is located in Nakhon
Ratchasima, but also extends across the Saraburi, Prachinburi and Nakhon Nayok Provinces of
Thailand. The study area consists of a complex mountainous topography, including the peaks of Khao
Rom, Khao Lam, Khao Keaw, Khao Sam Yod, Khao Far Pha, Khao Kampang, Khao Samor Poon and
Khao Kaew, with elevations of 1351, 1326, 1292, 1142, 1078, 875, 805, and 802 meters above sea level,
respectively [39]. Within this region, the most common forest types of Thailand occur, including both
evergreen forests (EF) and deciduous forests (DF). As such, the complex topography and diverse forest
ecosystem in this study area make it ideal for exploring topographic corrections of satellite imagery.

2.2. Landsat Imagery

The study dataset comprises Landsat TM-5 and OLI-8 images selected from the Land Processed
Distributed Active Archive Centre (LP DAAC) (Table 1) [40]. Cloud-free images were chosen for this
study, and only the red, green, blue, NIR, SWIR-1, and SWIR-2 bands of Landsat TM-5 and OLI-8
were included in the analysis. The image was converted to top-of-atmosphere (TOA) reflectance and
atmospherically corrected using a dark pixel subtraction method [6]. Further, all images were adjusted
using a forest normalization method, which uses the median value of evergreen forest to apply a linear
shift to each spectral band [5,7].

2.3. Digital Elevation Models (DEM)

The DEMs used for topographic correction in this study were obtained from different sources.
The National Aeronautics and Space Administration (NASA) SRTM 30 m ×30 m (1 arc-second)
high-resolution DEM was obtained from the U.S. Geological Survey (USGS) [41] and resampled using
a nearest neighborhood transformation [21].
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Table 1. Specifications of Landsat Thematic Mapper-5 (TM) and Operational Land Imager-8 (OLI)
imagery used in this study.

No Landsat Sensor (Path/Row) Date Acquired Sun Azimuth Sun Elevation

1 Landsat TM-5 128/050 1999-02-02 132.41329646 44.42900903
2 Landsat TM-5 129/050 1999-02-09 130. 01909034 45.70329359
3 Landsat OLI-8 128/050 2015-04-19 094. 94624942 65.59779841
4 Landsat OLI-8 129/050 2015-02-05 136.35602977 48.70124627

Additionally, the ASTER GDEM has been generated from the stereoscopic ASTER satellite images.
The ASTER GDEM, with 30 m × 30 m (1 arc-second) resolution, was downloaded from the USGS Earth
Explorer platform [42] and resampled using a nearest neighborhood transformation [21]. The Japan
Aerospace Exploration Agency’s Advance Land Observing Satellite “DAICHI” (ALOS) World 3D 30 m
DEM was initially considered for this study, but due to the excessive number of missing tiles over the
study area, it was not considered further for the analysis.

3. Methodology

This study consists of four major parts: topographic correction using multisource DEMs, evaluation
of the topographic corrections, forest type classification, and an assessment of the effectiveness of the
topographic correction on the overall accuracy of forest classifications. Figure 3 presents a flowchart
that describes the process of Landsat imagery analysis, in addition to the topographic correction
methods employed, the forest classification, and the evaluation of forest classification performance
after the topographic correction procedure. Each step is discussed in detail below.Sustainability 2017, 9, 258 6 of 27 
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correction parameters such as the Minnaert factor and the C factor in a C-correction. On this basis, a 
number of studies have suggested that it is necessary to estimate the parameters separately for the 
individual LULC types that are present in the study area [5,26,27,43]. We therefore separate forest 
and non-forest areas, so that topographic correction can be performed on homogenous forest pixels 
based on actual reflectance values [5]. Firstly, forest and non-forest areas were distinguished using 
the object-oriented multi-resolution segmentation method [44]. The segmentation was performed 
based on Normalized Difference Vegetation Index (NDVI) calculated from red and NIR band of 
Landsat imagery using a scale factor of 90. Separation of forest and non-forest areas was performed 
within the eCognition software environment by training nearest neighbor classifier with 
approximately 100 training samples. Then, visual map refinement was performed to ensure high 
quality. The final segmented forest mask was then used to subset homogeneous forest area from 
Landsat image. It should be noted, however, that this segmentation does not allow for the complete 
separation of soil, bare land, and rocks inside and on the edge of the segmented forest object. To 
address this, we consider these pixels as non-forest throughout the analysis. 
  

Figure 3. Flow diagram showing the detailed research methodology of topographic correction, Random
Forest (RF) supervised classification, and validation.
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3.1. Stratification of Forest and Non-Forest Areas

Several studies have indicated that the application of topographic correction methods over large
areas with different land cover types creates problems, resulting from specific LULC-dependent
correction parameters such as the Minnaert factor and the C factor in a C-correction. On this basis, a
number of studies have suggested that it is necessary to estimate the parameters separately for the
individual LULC types that are present in the study area [5,26,27,43]. We therefore separate forest
and non-forest areas, so that topographic correction can be performed on homogenous forest pixels
based on actual reflectance values [5]. Firstly, forest and non-forest areas were distinguished using the
object-oriented multi-resolution segmentation method [44]. The segmentation was performed based
on Normalized Difference Vegetation Index (NDVI) calculated from red and NIR band of Landsat
imagery using a scale factor of 90. Separation of forest and non-forest areas was performed within
the eCognition software environment by training nearest neighbor classifier with approximately
100 training samples. Then, visual map refinement was performed to ensure high quality. The final
segmented forest mask was then used to subset homogeneous forest area from Landsat image. It should
be noted, however, that this segmentation does not allow for the complete separation of soil, bare land,
and rocks inside and on the edge of the segmented forest object. To address this, we consider these
pixels as non-forest throughout the analysis.

3.2. Topographic Correction Methods

Five different topographic correction methods were used on the stratified forest area (Table 2).
A detailed overview of the different topographic correction methods is shown in Figure 3. These are
all based on the modeling of illumination (IL) conditions, and therefore require a DEM with the same
spatial resolution as the Landsat TM-5 and OLI-8 imagery [26]. The IL conditions are then modeled
using the ground slope and aspect with solar and satellite parameters [10,45]. A DEM is needed to
compute the incident angle (γi), defined as the angle between the normal to the ground and the sun’s
rays [45]. The IL parameters lie between −1 and +1, indicating minimum and maximum illumination,
respectively, and can be calculated using Equation (1):

IL = cosγi = cos θp cos θz + sin θp sin θz cos(∅a −∅o) (1)

where θp is the slope angle; θz is the solar zenith angle; ∅a is the solar azimuth angle; and ∅o is the
aspect angle.

Table 2. Summary of topographic correction methods used in this study on the DEM data.

No. Correction Method Equation

1 Improved cosine ρH = ρT +
(
ρT

(
IL−IL

IL

) )
2 C-correction ρH = ρT

(
cosθz+C

IL+C

)
3 Minnaert ρH = ρT

(
cosθz

IL

)K

4 Statistical-empirical ρH = ρT − ILm− b+ ρT)

5 VECA ρH = ρT + ρT
(mIL+b)

ρH = surface reflectance; ρT = reflectance of an inclined surface; θz is the solar zenith angle; Illumination (IL);
θp = slope angle; ∅a = solar azimuth angle; ∅o= aspect angle; ρT = mean of the radiance values of ρT for tilted and
horizontal surfaces of uncorrected forest pixels, and C and K are Minnaert constants.

Once the IL is calculated, the obtained illumination can be used in Lambertian (improved
cosine, C-correction), non-Lambertian (Minnaert), and empirical (SEC and VECA) topographic
correction methods.
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3.2.1. Improved Cosine Correction

The most commonly used Lambertian method is the cosine correction method, in which the
reflectance of the surface is calculated using Equation (2):

ρH = ρT

(
cos θz

IL

)
(2)

where ρH is the surface reflectance; ρT is the reflectance of an inclined surface; and θz is the solar
zenith angle. This method does not require any external parameters. Several studies have shown
that the cosine method tends to overcorrect in areas under low illumination conditions [10,19,26].
The improved cosine correction method was introduced by Civco in 1989 [22] to compensate for this
overcorrection by the cosine method. In this, the average illumination (IL) is also included in the
calculation (see Equation (3)) [26,45]. The IL is average illumination across the stratified forest pixels
in the image.

ρH = ρT +

(
ρT

(
IL − IL

IL

) )
(3)

3.2.2. C-Correction

The improved cosine correction is a wavelength independent method. Teillet et al. [19] proposed
the C-correction method, which considers the difference between bands under diffuse irradiation. As
such, the C-correction method is a band-specific regression coefficient topographic correction method,
which incorporates a modified cosine correction parameter, C. Based on the linear relationship between
IL and reflectance data, the empirical constant (C) can be automatically calculated for each band of
Landsat TM-5 and OLI-8 data (see Equation (4)) [8,26,46].

ρH = ρT

(
cos θz + C

IL + C

)
(4)

where ρT is the reflectance of an inclined surface and can be calculated as ρT = b + mIL; C is an
empirical constant that is calculated using C = b

m ; and b and m are the regression coefficients between
the illumination and the different band reflectances.

3.2.3. Minnaert Correction

The non-Lambertian methods assume that the combination of the angles of incidence and
observation can affect reflectance, and that surface roughness is also an important factor. One of
the most widely used methods for forest studies is the Minnaert correction, proposed by Minnaert
in 1941 [1,10,26,47]. This method adds a band-specific constant (K) to the cosine correction method
(see Equation (5)) [10,45]. It is assumed that if the Minnaert constant (K) is 1, the surfaces behave in
a perfectly Lambertian manner and the Minnaert values and cosines are equivalent [1,10,45]. In this
study, the Minnaert constant (K) was calculated automatically for forest and non-forest areas [5].

ρH = ρT

(
cos θz

IL

)K
(5)

where the K band-specific constant; and K and ln(ρH) are the regression coefficients. That is, ρH is
constant across the entire image for each band [10] (see Equation (6)).

ln(ρT) = ln(ρH) + K ln(
IL

cos θz
) (6)
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3.2.4. Statistical Empirical Correction (SEC)

The empirical correction methods are based on the relationship between radiance and the angle of
incidence [21,36]. The SEC correlates the pixel reflectance values with the corresponding predicted IL
from the DEM, and the slope of the regression line defines the statistical relationship between a given
forest and the variation of its radiometric response as a function of terrain slope [48]. This method is
land use specific (usually forest) [49]. The presence of non-forest outliers in the regression between
radiance and incidence angle might alter the sensibly of the equation [48].

ρH = ρT − mIL − b + ρT (7)

where m is the slope of the regression line, b is the y-intercept of the regression line, and ρT is the mean
of the ρT radiance values for uncorrected forest pixels on tilted and horizontal surfaces [31,49].

3.2.5. Variable Empirical Coefficient Algorithm (VECA)

The VECA method was proposed by Gao and Zhang, 2009 [31], and is based on the theoretical
and statistical analysis of the radiance values (see Equation (8)).

ρH = ρT
ρT

(mIL + b)
(8)

λ =
ρT

(mIL + b)
(9)

where λ is called an adjustment factor. Equation (8) can be written as Equation (10), in which λ is
directly proportional to ρT [30].

ρH = ρTλ (10)

The main aim of all of these topographic corrections is to reduce the variations in incident radiation
introduced by solar illumination of uneven mountainous terrain, affecting the same forest cover located
on opposite sides of a mountain or in its shadows. Topographic corrections in mountainous forest
cover type should produce the same reflectance at different solar azimuths, and so will show the same
spectral response in remotely sensed imagery [30].

3.3. Evaluation of Topographic Correction Methods

The performances of the topographic correction methods were evaluated by comparing
topographically corrected and uncorrected Landsat TM-5 and OLI-8 imagery, using visual interpretation
and statistical assessment based on the multisource DEMs.

3.3.1. Visual Interpretation

Firstly, the quality of topographic correction was assessed by visual interpretation of corrected and
uncorrected imagery. The visual assessment of uncorrected and corrected images gives an indication of
the correction effect. In most of the cases, noticeable or minor differences could be observed in the true
color, false color, and pseudo natural color composites. However, the interpretation of results depends
heavily on the skill of the image analyst or observer. In order to obtain a better understanding, the visual
evaluation of corrected imagery must be combined with a quantitative statistical assessment [21,28,29].

3.3.2. Statistical Interpretation

The performances of the topographic corrections were further examined using mean and standard
deviation (SD) of individual Landsat TM-5 and OLI-8 bands. The correction methods were evaluated
based on analyses that test the homogeneity of reflectance values within a given forest area. Spectral
characteristics of the selected forest pixels before and after the correction were extracted and compared.
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A successful correction should decrease the variability (SD) within each band, while the mean value of
each image band should be very close to each other [10]. The relative variability (SD) should show a
reduction compared to the uncorrected image bands. This change in SD value indicates the removal of
topographic shadow effects. The quality of topographic correction can therefore be estimated using the
relative variability of reflectance within each forest type. In previous works, the reduction of the SD of
the reflectance from the forest cover was calculated by the coefficient of variation (CV) [9,15,17,21,28,33].
The CV is simply the ratio of the SD to the mean reflectance, expressed as a percentage (Equation (11)).

CV(%) =
SD
µ

× 100 . (11)

where CV is the coefficient of variance for reflectance values of selected forest pixels, SD is the standard
deviation of reflectance values, and µ is the mean of the reflectance values. The CV is expected to
decrease after a successful topographic correction. For a better evaluation of the changes before and
after correction, CV values of all bands and the CV differences were calculated using Equation (12) [33].
In this, positive values of CVDifference indicate a decrease in CV.

CVDifference = CVBefore−correction − CVAfter−correction (12)

3.3.3. Evaluation of Shadow and Non-Shadow Area

The most suitable DEM and best performing correction methods were selected based on
CVDifference values (see Section 3.2.2). In order to evaluate performance of a topographic correction
method in shadow and non-shadow areas, the reflectance values of uncorrected and corrected images in
both areas were compared. The average and CV for each band of Landsat TM-5 and OLI-8 uncorrected
and corrected images were compared. The best method should decrease the variability within each
band of the shadow areas, while the average value of each image band should be increased. On the
other hand, in the non-shadow areas, the average and CV should not vary from the uncorrected image
reflectance. This behavior of reflectance in shadow and non-shadow areas indicates that the best
topographic correction has only been applied on topographic shadows, while preserving the original
reflectance values of the image [31].

3.4. Training and Validation Data

The selection of a systematic training and validation dataset across a forest landscape ensures a
sample that has the proportions of the forest classes, and which represents the actual area occupied by
different forest types. It must be assumed that the sample should be a good representative of forest
pixels, and is sufficiently large to provide reliable estimates. For the present study, we used a stratified
random sampling approach to estimate the total sample size per class [50,51]. In total, 767 sample
locations were selected for all forest and non-forest classes. Among these, 667 locations were collected
for the three major forest types: Class 1, Evergreen forest (EF); Class 2, Deciduous forest (DF); and
Class 3, Bamboo forest (BB). For the non-forest (NF) Class 4, around one hundred sample locations
were created, using the existing land use map and interpretations of the high-resolution imagery. For
each forest type, the numbers of training sample points were: 237 for EF; 108 for DF; 100 for BF; and
70 for NF. We manually collected many training and validation samples, 152 of which were from a
field survey conducted in March, 2015, and around 100 were derived from previous field surveys
by the Royal Forest Department, Thailand during 2008 and 2009. We have carefully selected these
forest locations to ensure that the sample is taken from an undisturbed forest area. The dominant
forest type and topographic data, such as slope, elevation, and forest conditions, was recorded for each
individual sample location. A combination of Google Earth images, high-resolution satellite imagery,
aerial photographs, and prior knowledge were used to sample the remaining locations in remote areas
that were difficult or impossible to access. Among these sample locations, 252 were randomly selected
to be set aside as validation data samples, and to avoid spatial autocorrelation, the selected training
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and validation pixels were chosen to not be close to one another [32]. The size of training sample for
each class was greater than 50 pixels (Figure 4).
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3.5. Forest Classification

Prior to forest classification, the satellite imagery was pre-processed and topographically corrected.
Pre-processing incorporates atmospheric correction, geometric correction, image normalization,
topographic correction, the segmentation of forest and non-forest areas, and construction of a mosaic
of Landsat images for path/row: 128/50 and 129/50. The performance of each topographic correction
method was tested against the SRTM DEM and ASTER GDEM, and the topographic correction method
that performs the worst with both DEMs is not considered in further classifications. We performed a
series of supervised pixel-based classifications of topographically uncorrected and corrected imagery
with the RF classifier. The classification scheme included the four classes mentioned in Section 3.4:
Class 1, EF; Class 2, DF; Class 3, BF; and Class 4, NF. It should be noted that the same training and
testing data samples were used for the supervised classification of the corrected and uncorrected
imagery. A 3 × 3 majority filter was applied to the classified imagery to remove salt-and-pepper effects
and to minimize the omission errors [52].

Random Forest (RF) Classifier

The RF classifier was used for forest classification [53,54]. It is a widely used non-parametric
machine learning classifier consisting of an ensemble of decision trees and bootstrapping with
replacements [55,56]. RF is based on a tree classifier and grows many classification trees. In order to
classify a new vector, the input vector is classified alongside each of the trees in the forest. Each tree
gives a classification, and the tree votes for that class. The forest then chooses the classification with
maximum votes from all of the classification trees in the forest [57]. The advantages of using RF is its
potential to determine the importance of variables, its robustness to data reduction, no tendency to
over fit, the production of an unbiased accuracy estimate, and a higher accuracy than decision trees
with lower sensitivity to tuning parameters [58].

In this study, we used the RF implementation in R packages Random Forest [53,54,59] and
RStoolbox [60], as well as the Quantum GIS open source GIS software package [61].
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3.6. Accuracy Assessment

During the classification process, around 70% of the sample points were used to train the classifier,
while the remaining 30% of sample points used to test the accuracy and validate the classifier (Figure 4).
The accuracies of the RF classifier were considered through assessments of the overall accuracy and
Kappa statistics (KHAT) [11,17,55,62]. In this study, the kappa coefficients of Landsat TM-5 and OLI-8
imagery are derived as a second measure of classification accuracy. The Kappa values indicate a fair
level of agreement between the RF classifier prediction of forest class and the actual field survey
data [18]. The accuracy of classified topographically uncorrected imagery was assessed and compared
with the following scenario: RF with four classes—classified topographically corrected imagery using
the SRTM DEM.

4. Results

4.1. Evaluation of Topographic Correction Methods

The performances all topographic correction algorithms were evaluated by comparing
topographically corrected and uncorrected Landsat TM-5 and OLI-8 images, using visual interpretation
and statistical assessment based on the two DEMs (SRTM and ASTER GDEM).

4.1.1. Visual Interpretation with SRTM and ASTER GDEM Based Topographic Correction

Figures 5 and 6 show false color composites (Landsat TM-5: Band 5-4-2 and Landsat OLI-8: band
6-5-4) of selected sites in the study area, both uncorrected and topographically corrected using the
SRTM DEM and ASTER GDEM. The illumination (Figure 5b,j) shows the cosine of the solar incident
angle calculated using these DEMs. Figure 5b,j and Figure 6b,j clearly show that those forest areas
facing the Sun receive more light and appear brighter, while forest areas in the mountain shadows
appear darker. The uncorrected Landsat TM-5 and OLI-8 images also reveal the visible effect of
topographic shadows. A comparison of the topographically uncorrected and corrected imagery shows
the significant effect of mountain shadows on reflectance values (Figures 5 and 6). After topographic
correction, however, a significant reduction in the topographic relief effect have been observed. The
Landsat TM-5 and OLI-8 images show noticeable differences after correction with both the SRTM DEM
and ASTER GDEM, especially in those areas that are shaded by steep slopes (Figures 5 and 6).

The C-correction, Minnaert, SEC and VECA topographic corrections all seem to show a greater
reduction in the topographic effect than the improved cosine correction. The selected site pictured in
Figures 5 and 6 has an extremely uneven mountain topography covered mainly by evergreen forest.
The improved cosine correction shows a small overcorrection in Figure 5d,l, and Figure 6d,l, which is
caused by the Lambertian reflectance assumptions. Many studies have reported similar behavior in the
cosine correction method [10,13,14,63]. Among the five methods investigated here, the C-correction,
SEC, and VECA appear to perform the best, because their corrected images are more homogenous
and have a darker appearance than the images produced by other topographic correction methods.
The overcorrection of the improved cosine correction is not apparent in any of the other corrected
images. Additionally, it should be noted that in the very dark shadows the SRTM DEM produces a
greater decrease in the relief effect than the ASTER GDEM. All of the topographic correction methods
were capable of producing an image in which all the pixels of the same forest type appeared the same,
regardless of terrain slope and mountain shadows.
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Figure 5. Comparison of false color composites of Landsat TM-5 (band 5-4-3) image with SRTM DEM: 
(a) SRTM DEM; (b) Illumination based on SRTM; (c) Original image; (d) Improved cosine correction; 
(e) C-correction; (f) Minnaert correction; (g) Statistical-empirical correction (SEC); and (h) Variable 
Empirical Coefficient Algorithm (VECA); and comparison of false color composite of Landsat TM-5 
(band 5-4-3) image with ASTER GDEM: (i) ASTER GDEM; (j) Illumination based on ASTER GDEM; 
(k) Original image; (l) Improved cosine correction; (m) C-correction; (n) Minnaert correction; (o) 
Statistical-empirical correction; and (p) VECA. 
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Figure 5. Comparison of false color composites of Landsat TM-5 (band 5-4-3) image with SRTM
DEM: (a) SRTM DEM; (b) Illumination based on SRTM; (c) Original image; (d) Improved cosine
correction; (e) C-correction; (f) Minnaert correction; (g) Statistical-empirical correction (SEC); and
(h) Variable Empirical Coefficient Algorithm (VECA); and comparison of false color composite of
Landsat TM-5 (band 5-4-3) image with ASTER GDEM: (i) ASTER GDEM; (j) Illumination based on
ASTER GDEM; (k) Original image; (l) Improved cosine correction; (m) C-correction; (n) Minnaert
correction; (o) Statistical-empirical correction; and (p) VECA.
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Figure 6. Comparison of false color composite of Landsat OLI-8 (band 6-5-4) image with SRTM DEM:
(a) SRTM DEM; (b) Illumination based on SRTM; (c) Original image; (d) Improved cosine correction;
(e) C-correction; (f) Minnaert correction; (g) Statistical-empirical correction; and (h) Variable Empirical
Coefficient Algorithm (VECA); and comparison of false color composite of Landsat OLI-8 (band 6-5-4)
image with ASTER GDEM: (i) ASTER GDEM; (j) Illumination based on ASTER GDEM; (k) Original
image; (l) Improved cosine correction; (m) C-correction; (n) Minnaert correction; (o) Statistical-empirical
correction; and (p) VECA.

4.1.2. Statistical Interpretation of SRTM DEM and ASTER GDEM-Based Topographic Corrections

A coarse classification of the Landsat OLI-8 data from 2015 is conducted, based on SEC corrected
imagery employing the four major classes mentioned in Section 3.4 [28]. We applied this coarse
classification to maintain homogeneity when selecting the forest pixels, so that the performance of
topographic corrections can be evaluated with respect to individual forest types. Tables 3 and 4 show
the selected homogenous forest pixels for each forest type and each band of the Landsat TM-5 and
OLI-8 data. The number and locations of pixels used to calculate the CV from each band of the
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image are the same. Furthermore, Tables 3 and 4 also show the mean CV and CVDifference values for
the selected pixels in the corrected and uncorrected spectral bands of the Landsat TM-5 and OLI-8
data. The results after topographic correction show the effectiveness of the topographic correction
methods. The difference between the results from the two DEMs can be evaluated using the average
CVDifference values (Tables 3 and 4), which indicated that the CV values were lowered compared with
the uncorrected imagery. However, in most cases, the SRTM DEM better maintained the mean and
reduced CV, compared to the ASTER GDEM. The positive CVDiffrence values in most of these cases
indicate an increase in performance.

The improved cosine correction method shows lower CVDifference values than the other
topographic correction methods for all three forest types: EF, DF, and BF. It can be seen from Figures 5
and 6 and Table 3 and 4 that the improved cosine correction appears to be able to reduce the topographic
relief effect but results in lower CVDifference values. In contrast, after correction by SEC, VECA, and
C-correction, the CVDifference values are increased dramatically compared with the uncorrected imagery,
indicating that there is no overcorrection by these methods.

Table 3 presents the changes in the reflectance characteristics of the Landsat TM-5 images,
corrected using the SRTM DEM and ASTER GDEM in the study area. With the SRTM DEM, SEC
ranks highest overall, with the greatest CVDifference values for EF, DF, and BF of 7.44, 2.54, and 4.60,
respectively. A reduction in CV values can be observed in the vegetation-sensitive bands such as NIR
and SWIR, and in individual forest classes. The improved cosine and Minnaert correction methods
resulted in a decrease in CVDifference values. Thus, SEC ranks first, followed by VECA, the C-correction,
Minnaert and the improved cosine correction (Table 3a). Additionally, the CVDifference values presented
here for the SEC correction are higher for EF than for DF and BF, because the mean reflectance values
are lower for EF after correction, especially in the NIR and SWIR spectral bands.

Table 3b shows the CV and CVDifference values for the Landsat TM-5 imagery topographically
corrected using the ASTER GDEM. Results for EF, DF, and BF reveal that almost all of the methods
are able to increase the CVDifference values, with the exception of the improved cosine and Minnaert
corrections. It can be seen that the results with the ASTER GDEM are little more inconsistent than with
the previous DEM. For EF, SEC is able to increase the CVDifference values better than the other methods,
whereas the C-correction, Minnaert, and VECA increase the CVDifference values for DF and BF more
than the SEC correction. Moreover, the comparison between multisource DEMs reveals that the SRTM
DEM-corrected Landsat TM-5 imagery is able to maintain a higher rate of CVDifference values than that
corrected with the ASTER GDEM.

Table 4 presents the reflectance values of the Landsat OLI-8 data, corrected using the SRTM DEM
and ASTER GDEM in the study area. With the SRTM DEM, SEC produces an increase in CVDifference
values in EF, while the C-correction, VECA and Minnaert are better able to maintain CVDifference values
in the DF and BF classes, compared to SEC (Table 4a). It should be noted that EF occupies the majority
of the study area, and is located particularly in regions with uneven mountainous terrain. In contrast,
DF and BF together occupy a smaller area than the EF, and tend to be located in less sloping and flatter
terrain. The corrections utilizing the ASTER GDEM follow similar trends, and are able to maintain
higher CVDifference values, with the exception of the improved cosine and Minnaert corrections.

The results presented here indicate that most of the topographic correction methods produce
an increase in CVDifference values. However, the obtained CVDifference values are highly influenced by
the DEM used for the topographic correction, such that the SRTM DEM-based SEC of Landsat TM-5
resulted in higher CVDifference values than with the ASTER DEM (Table 3). Decreases in CVDifference
values are rarely observed with the SRTM DEM-based topographic corrections, and are slightly
more common with the ASTER GDEM. An overall comparison of CVDifference values for different
topographic correction methods suggests that the SEC method performs best, followed by VECA and
the C-correction, while the improved cosine and Minnaert corrections perform the worst, especially
with the ASTER GDEM. Consequently, the SRTM DEM-based SEC, VECA and C-correction imagery
are used for subsequent classifications, with the uncorrected imagery for comparison.



www.manaraa.com

Sustainability 2017, 9, 258 15 of 26

Table 3. CVs and CV differences in the reflectances of forest types in topographically uncorrected and corrected Landsat TM-5 images, based on the: (a) SRTM DEM;
and (b) ASTER GDEM. Class 1: Evergreen forest (EF), Class 2: Deciduous forest (DF), Class 3: Bamboo forest (BF).

(a) Landsat TM-5 Using STRM DEM

Original Improved Cosine C-Correction Minnaert SEC VECA

CV Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Band 1 2.85 3.55 2.10 12.91 26.87 25.93 2.59 3.23 3.92 8.73 4.31 3.66 2.50 3.23 3.61 2.59 3.23 4.05
Band 2 7.11 8.99 5.40 11.54 24.05 23.67 5.78 7.36 4.63 9.81 7.67 4.71 5.21 7.50 4.86 5.78 7.36 4.78
Band 3 7.37 13.75 8.05 12.12 22.97 22.50 6.17 11.71 6.25 9.48 11.84 5.97 5.56 12.07 5.87 6.17 11.71 6.42
Band 4 21.18 18.98 15.34 13.43 26.15 20.76 14.02 17.77 12.37 14.94 17.28 11.80 9.95 19.07 10.91 14.02 17.77 12.35
Band 5 26.66 34.18 26.94 17.49 26.10 18.66 18.35 26.83 18.21 19.39 27.35 17.92 11.74 28.35 16.75 18.35 26.83 18.33
Band 6 30.38 44.20 31.51 24.14 30.14 20.81 24.76 35.78 22.31 25.54 36.69 22.01 15.90 38.20 19.71 24.76 35.78 22.50

Average 15.93 20.61 14.89 15.27 26.05 22.06 11.94 17.11 11.28 14.65 17.52 11.01 8.48 18.07 10.28 11.94 17.11 11.40
Difference of
average CVs - - - 0.65 –5.43 –7.16 3.98 3.49 3.60 1.27 –2.63 3.87 7.44 2.54 4.60 3.98 3.49 3.48

(b) Landsat TM-5 Using ASTER GDEM

Original Improved Cosine C-Correction Minnaert SEC VECA

CV Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Band 1 2.85 3.55 2.10 15.08 23.71 26.26 2.64 3.24 3.41 9.09 4.00 4.09 2.55 3.24 3.83 2.64 3.24 3.58
Band 2 7.11 8.99 5.40 14.21 20.72 24.11 6.18 7.36 4.46 9.76 7.11 5.13 5.67 7.50 4.76 6.18 7.36 4.64
Band 3 7.37 13.75 8.05 14.65 19.92 23.23 6.59 11.77 6.41 9.39 11.00 6.40 6.10 12.11 6.67 6.59 11.77 6.63
Band 4 21.18 18.98 15.34 16.68 23.75 19.91 16.89 16.96 11.43 20.33 16.65 11.23 12.59 17.90 10.78 16.89 16.96 11.40
Band 5 26.66 34.18 26.94 20.46 25.19 19.41 21.19 27.49 19.22 24.14 27.55 19.02 14.86 28.59 20.02 21.19 27.49 19.39
Band 6 30.38 44.20 31.51 26.69 30.39 21.93 26.89 36.77 23.63 28.27 36.84 23.36 18.80 38.85 25.41 26.89 36.77 23.90

Average 15.93 20.61 14.89 17.96 23.95 22.47 13.40 17.26 11.43 16.83 17.19 11.54 10.09 18.03 11.91 13.40 17.26 11.59
Difference of
average CVs - - - –2.03 –3.33 –7.58 2.52 3.34 3.46 –0.90 3.41 3.35 5.83 2.57 2.97 2.52 3.34 3.30
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Table 4. CVs and CV differences in the reflectances of forest types in topographically uncorrected and corrected Landsat OLI-8 images, based on the: (a) SRTM DEM;
and (b) ASTER GDEM. Class 1: Evergreen forest (EF), Class 2: Deciduous forest (DF), Class 3: Bamboo forest (BF).

(a) Landsat OLI-8 Using SRTM DEM

Original Improved Cosine C-Correction Minnaert SEC VECA

CV Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Band 2 1.95 3.08 2.43 12.11 23.02 10.52 1.40 2.57 3.56 8.29 3.84 3.87 1.34 2.58 3.86 1.40 2.57 3.70
Band 3 6.14 8.94 7.72 10.03 20.22 10.04 4.09 7.13 6.67 8.47 7.53 7.25 3.67 7.22 6.70 4.09 7.13 6.72
Band 4 7.16 14.73 10.58 10.14 18.52 11.90 5.25 12.57 9.57 9.70 12.81 10.08 4.72 12.80 9.95 5.25 12.57 9.66
Band 5 22.21 21.78 9.49 13.49 22.75 8.88 14.29 18.53 7.39 15.20 18.44 7.12 9.75 19.02 7.37 14.29 18.53 7.52
Band 6 25.06 32.40 13.84 17.55 23.84 11.40 18.21 25.62 11.10 19.06 26.10 11.52 12.44 26.55 11.30 18.21 25.62 11.20
Band 7 24.66 36.98 15.64 18.47 25.74 13.14 19.11 29.98 13.14 20.07 30.61 13.88 13.43 31.22 13.64 19.11 29.98 13.27

Average 14.53 19.65 9.95 13.63 22.35 10.98 10.39 16.07 8.57 13.46 16.56 8.95 7.56 16.57 8.80 10.39 16.07 8.68
Difference of
average CVs - - - 0.89 –2.69 –1.02 4.13 3.58 1.38 1.06 3.09 0.99 6.97 3.08 1.14 4.13 3.58 1.27

(b) Landsat OLI-8 Using ASTER GDEM

Original Improved Cosine C-Correction Minnaert SEC VECA

CV Evergreen
Forest

Deciduous
Forest

Bamboo
Forest

Evergreen
Forest

Deciduous
Forest

Bamboo
Forest
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Band 2 1.95 3.08 2.43 14.13 20.03 10.92 1.56 2.63 3.24 8.66 3.62 4.44 1.51 2.64 3.54 1.56 2.63 3.42
Band 3 6.14 8.94 7.72 12.85 17.60 10.56 4.87 7.39 6.79 8.49 7.15 7.56 4.50 7.45 6.85 4.87 7.39 6.85
Band 4 7.16 14.73 10.58 13.12 16.56 12.09 5.98 12.91 9.59 9.51 11.91 10.16 5.51 13.10 9.99 5.98 12.91 9.68
Band 5 22.21 21.78 9.49 16.47 21.67 9.85 17.04 18.79 7.87 19.04 18.71 7.84 12.53 19.11 7.86 17.04 18.79 7.99
Band 6 25.06 32.40 13.84 20.14 24.51 11.99 20.62 26.89 11.55 22.18 26.83 12.00 15.03 27.55 11.79 20.62 26.89 11.66
Band 7 24.66 36.98 15.64 21.03 26.94 13.66 21.15 31.29 13.56 22.42 31.18 14.32 15.73 32.28 14.10 21.15 31.29 13.70

Average 14.53 19.65 9.95 16.29 21.22 11.51 11.87 16.65 8.77 15.05 16.57 9.39 9.14 17.02 9.02 11.87 16.65 8.88
Difference of
average CVs - - - –1.76 –1.56 –1.55 2.65 3.00 1.18 –0.52 3.08 0.56 5.39 2.62 0.93 2.65 3.00 1.06
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4.2. Performance Evaluation of Topographic Correction Methods in Shadow and Non-Shadow Area

From the previous analysis, we can state that the SRTM DEM produced slightly better results than
the ASTER GDEM. In this section, we used only SRTM DEM based topographically corrected images
to identify the best performing method in topographic shadow and non-shadow areas. In the above
results, the improved cosine and Minnaert correction methods performed the worst on the SRTM DEM,
so we only used the SEC, VECA, and C-corrected images for comparing shadow and non-shadow
areas. Mean reflectance and CV values of the selected homogeneous shadow and non-shadow test
pixels for each band of Landsat TM-5 and OLI-8 (uncorrected and corrected) were calculated and
presented in Tables 5 and 6.

Table 5a presents the changes in reflectance characteristics of the Landsat TM-5 images in the
shadow areas. A reduction in CV values and an increase in average values can be observed in shadow
affected areas. Additionally, the CVDifference values suggest that SEC ranks first (6.43), followed by
VECA and C-correction. On the other hand, Table 5b presents the changes in reflectance characteristics
of the Landsat TM-5 images in non-shadow areas. The results for C-correction, SEC and VECA
indicate that all of the methods are able to maintain the original reflectance in non-shadow areas after
topographic correction. SEC is able to maintain the closest reflectance to the original image compared
to VECA and C-correction, especially in the NIR and SWIR bands (Table 5b).

Table 6a presents the changes in reflectance characteristics of the Landsat OLI-8 images in the
shadow areas. The Landsat OLI-8 images exhibit similar behavior to those of the Landsat TM-5 for
shadow areas, after correction by SEC, which ranks first (CVDifference 5.54), followed by VECA and
C-correction. In the non-shadow areas (Table 6b), C-correction, SEC and VECA are all able to maintain
reflectance values, but SEC performed slightly better in NIR and SWIR bands. The comparison of
shadow and non-shadow areas indicates that the evaluated methods are able to maintain reflectance
values after correction of both Landsat TM-5 and OLI-8 images.

Table 5. Comparison of Landsat TM-5 reflectance in shadow and non-shadow area (unit percentage).

Shadow Area (a) Original C-Correction SEC VECA

Statistics Average CV Average CV Average CV Average CV

Band 1 7.43 2.26 7.58 2.21 7.69 2.13 7.67 2.21
Band 2 4.77 5.61 5.25 5.66 5.40 5.03 5.28 5.66
Band 3 3.16 6.05 3.53 5.74 3.66 4.88 3.55 5.74
Band 4 10.59 20.62 16.44 20.00 18.16 11.50 16.18 20.00
Band 5 3.90 23.77 6.14 22.99 7.39 11.72 6.04 22.99
Band 6 1.51 30.31 2.28 29.16 2.84 14.76 2.24 29.16

Average 14.77 14.29 8.34 14.29
Difference of average CV - 0.48 6.43 0.48

Non-Shadow Area (b) Original C-Correction SEC VECA

Statistics Average CV Average CV Average CV Average CV

Band 1 7.84 2.63 7.86 2.65 7.95 2.61 7.95 2.65
Band 2 5.91 3.70 5.98 3.84 6.02 3.78 6.01 3.84
Band 3 3.91 5.82 3.97 5.75 4.00 5.62 3.99 5.75
Band 4 19.40 4.30 20.41 5.37 20.14 5.21 20.09 5.37
Band 5 7.63 5.47 8.04 6.44 7.96 6.43 7.90 6.44
Band 6 2.79 9.32 2.93 10.29 2.92 10.16 2.88 10.29

Average 5.21 5.72 5.64 5.72
Difference of average CV - –0.51 –0.43 –0.51
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Table 6. Comparison of Landsat OLI-8 reflectance in shadow and non-shadow area (unit percentage).

Shadow Area (a) Original C-Correction SEC VECA

Statistics Average CV Average CV Average CV Average CV

Band 1 7.55 1.31 7.75 1.24 7.86 1.18 7.84 1.24
Band 2 5.12 4.29 5.74 4.01 5.85 3.48 5.76 4.01
Band 3 3.18 5.13 3.55 4.91 3.65 4.24 3.57 4.91
Band 4 12.50 21.42 19.12 20.83 21.18 12.01 18.82 20.83
Band 5 4.98 24.49 7.65 23.74 8.72 13.08 7.52 23.74
Band 6 2.08 24.34 3.06 23.69 3.47 13.79 3.02 23.69

Average 13.50 13.07 7.96 13.07
Difference of average CV - 0.43 5.54 0.43

Non-Shadow Area (b) Original C-Correction SEC VECA

Statistics Average CV Average CV Average CV Average CV

Band 1 7.84 0.64 7.86 0.64 7.95 0.63 7.95 0.64
Band 2 5.91 1.77 5.99 1.92 6.02 1.90 6.01 1.92
Band 3 3.75 2.44 3.80 2.49 3.83 2.45 3.82 2.49
Band 4 23.21 5.21 24.21 5.36 23.88 5.27 23.83 5.36
Band 5 8.98 6.04 9.37 6.40 9.27 6.35 9.22 6.40
Band 6 3.46 7.08 3.60 7.26 3.57 7.16 3.55 7.26

Average 3.86 4.01 3.96 4.01
Difference of average CV - –0.15 –0.1 –0.15

4.3. Evaluation of Topographically Corrected and Uncorrected Forest Classification Accuracies

An overview of RF classifications for various topographically corrected and uncorrected data
from Landsat TM-5 and OLI-8 is presented in Figures 7 and 8. In the above results, the improved cosine
and Minnaert correction methods performed the worst with both DEMs, so we only used the results of
SEC, VECA, and C-corrections for classification. Since visual interpretation and statistical evaluation
suggest that the SRTM DEM is able to perform better than the ASTER GDEM, the results obtained from
the C-correction, SEC and VECA topographic corrections using the SRTM DEM are used in the RF
classification. The forest classifications presented here are based on the following scenarios: (a) Landsat
TM-5 with the SRTM DEM; and (b) Landsat OLI-8 with the SRTM DEM. Figures 7 and 8 shows the
overall accuracy and Kappa coefficient of the RF machine learning classifier for the topographically
uncorrected and C-correction, SEC, and VECA-corrected Landsat TM-5 and OLI-imagery.

Considering the overall accuracy, significant differences can be observed between the topographically
corrected and uncorrected data from Landsat TM-5 and OLI-8. Forest classification based on the
topographically uncorrected imagery shows an overall accuracy of 78.41% and a Kappa coefficient
of 68.8%. After correction, the C-correction, SEC, and VECA-corrected data resulted an increase in
overall accuracy, to 81.50 %, 82.38%, and 81.50%, respectively, as well as Kappa values of 71.2%, 73.7%,
and 72.5%, respectively. Comparison of the uncorrected and corrected results reveals increases in
overall accuracy of 3.09%, 3.97%, and 3.09%, and an increase in Kappa coefficient of 2.4%, 4.9% and
3.7%, respectively. Thus, for Landsat TM-5 imagery, the SEC-corrected imagery ranks highest for
improved forest classification, with a 3.97% increase in overall accuracy and an increase in Kappa
coefficient of 4.9% (Figure 7a). Figure 7b presents the forest classification of Landsat TM-5 obtained
after SEC correction.

Similarly, Figure 8 shows the overall accuracy and Kappa coefficients of topographically corrected
and uncorrected data from Landsat OLI-8. The overall accuracy of the uncorrected imagery was
81.06% with a Kappa coefficient of 71%. An increase in overall accuracy and Kappa coefficient similar
to that described above can be seen in the Landsat OLI-8 imagery. Correction by the C-correction,
SEC and VECA methods resulted in overall accuracies of 81.50%, 82.38%, and 81.94%, and Kappa
values of 72.6%, 73.9%, and 73.2%, respectively. Thus, the topographic corrections result in increases
in overall accuracy of 0.44%, 1.32%, and 0.88%, and an increases in Kappa values of 1.6 %, 2.9%,
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and 2.2%, respectively. Thus, for Landsat OLI-8 data, the SEC-corrected imagery ranks highest for
improved forest classification, increasing the overall accuracy by 1.32% and the Kappa coefficient by
2.9% (Figure 8a). Figure 8b presents the forest classification of Landsat OLI-8 obtained after SEC.Sustainability 2017, 9, 258 20 of 27 
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In summary, the classification accuracies for topographically corrected imagery are higher than
for uncorrected imagery. The results indicate that the Landsat TM-5 data are subject to a greater change
in overall accuracy than the Landsat OLI-8 images. Thus, the results from this study suggest that the
topographic effects within Landsat TM-5 and OLI-8 sensor imagery can be effectively reduced, with
an increase in the overall accuracy of the RF classifier.
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5. Discussion

5.1. Topographic Correction and DEMs

A major limitation of many topographic correction methods is the availability of a DEM
of sufficient quality [10,21,26]. The recommended DEM resolution for effective removal of the
topographic effect is one third the pixel size of Landsat images [26]. Owing to the limited availability of
high-resolution DEMs and the poor accessibility to mountainous forest terrain, an evaluation of the full
potential of freely available DEMs is essential. In this study, we have evaluated various topographic
correction methods based on freely available multisource DEMs. We focused on Landsat TM-5 and
OLI-8 imagery, which has a 30 m × 30 m resolution, as well as the freely available SRTM DEM and
ASTER GDEM, both of which have a similar resolution. The recent availability of the SRTM DEM
with 30 m × 30 m resolution allows for its direct comparison with the ASTER GDEM in the analysis
of topographic correction methods. We showed that both DEMs are able to improve the topographic
correction of satellite imagery, and it can therefore be concluded that both DEMs are suitable for
removing the topographic effect from Landsat series imagery.

We found, however, that the performance of the topographic correction methods is greatly
affected by the chosen DEM. In general, the SRTM DEM produced slightly superior results compared
to the ASTER GDM for individual forest classes. The accuracies of corrections based on the ASTER
GDEM may vary as a result of lower absolute vertical and horizontal errors and data noise in hilly
areas [21,64,65]. On a larger scale, especially in forest regions with mountainous terrain, the quality
of the ASTER GDEM-corrected imagery greatly varies from region to region, due to the presence of
frequent cloud cover or low optical contrast in the source images [21,65]. However, it should be noted
that the ability of radar (C-band) to penetrate clouds and dense vegetation gives the SRTM DEM an
advantage over optical observations. The superior performance of the SRTM DEM in comparison with
the ASTER GDEM is in line with previous studies [8,21,32,33,65–67].

In this study, the topographic correction performance varied, depending on the method and
DEM used. Our results indicate that the C-correction, SEC, and VECA methods show the best
performance with both DEMs. The improved cosine correction consistently overcorrects the imagery,
as a result of the Lambertian reflectance assumptions [10,13,14,63]. Additionally, the algorithm
for this method considers the mean illumination for forest strata instead of regression parameters
calculated from the illumination and uncorrected reflectance [5]. The Minnaert correction method
did not perform well either, especially in evergreen forests, which cover the majority of the study
area. The Minnaert corrected image, which provides good visual appearance compared to the improved
cosine correction, shows a decrease in the topographic effect. However, the Minnaert correction method
with the slope included is unable to give good results, which was reported by Riaño et al. [10] and
Hantson et al. [26]. The negative CVDifference values within the heterogeneous deciduous forest shows
the poorer performance in less sloping or flat terrain. Overall, we observed that the SEC method was
able to correct the Landsat TM-5 and OLI-8 imagery better than the other correction methods. This is
due consideration of a prior specification of forested pixels [48] and non-Lambertian assumption
for forest class [5]. The C-correction and VECA also produces acceptable results, but the statistical
evaluation suggests that SEC is superior. In addition, the comparison of shadow and non-shadow
area proved the effectives of SEC correction method. The topographic correction results were seen
to vary within heterogeneous forest types, primarily deciduous forests, occupying flatter terrain.
In the deciduous forest, the C-correction and VECA perform slightly better than SEC. This implies
that the regression parameters may be affected by the heterogeneity of forest types, and that further
stratification and the creation of sub-forest strata could improve the correction of heterogeneous
forest pixels [68].

5.2. Forest Classification Results and Accuracies

Our results showed that forest classification accuracy increased after topographic correction.
For Landsat TM-5 and OLI-8 data, the increases in overall accuracy varied between 3% and 3.97%, and
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0.44% and 1.34%, with increases in Kappa coefficient of 2.4% – 4.9% and 1.6% – 2.9%, respectively [32].
Further, in addition to the topographic correction methods, the performance of forest classification
varies between forest cover types [69]. The classification of evergreen forests, bamboo, and non-forest
areas was completed with the highest accuracy, but the greatest variation was found in the deciduous
forest class. It is likely that the heterogeneous nature of this forest type makes it difficult to classify. As a
result, the obtained accuracies were lower in this DF compared with the EF and BF classes. The highest
misclassification rate was also found within the DF, as a result of its heterogeneous nature and highly
fragmented distribution. The total area of deciduous forest accounts for only a small percentage of the
total forest area in our study region, and are mostly located in less sloping terrain. The used Landsat
imagery and field surveys from March, during which the deciduous forests drop their leaves, could
be reason for the lower accuracy among deciduous forest types. An improved approach is therefore
required to address this interclass variability in spectral response, since the phenological changes of
a forest could affect the topographic correction as well as the accuracy of the classifiers. The spatial
and temporal variations of specific forest types, such as deciduous forest, must be considered when
applying topographic corrections.

Topographic corrections also lead to a small but significant improvement in the overall accuracy
of the RF classifier. This approach is very useful for the detection and analysis of long term change
using multiple sensors and multitemporal images from the Landsat series.

6. Conclusions

In this study, five topographic correction methods were evaluated by comparing their impact on
the overall accuracy of forest classification algorithms. The topographic correction was performed
using two DEMs: SRTM and ASTER GDEM DEMs. The results of the topographic correction indicate
that a stratified approach using C-correction, SEC, and VECA correction methods was able to reduce the
topographic effect within mountainous forest terrain, while preserving original reflectance values of an
image. Among these, the SEC performs best with the SRTM 30 m × 30 m DEM, while the C-correction
and VECA also produce acceptable corrections. It is expected that further sub-stratification of forest
types and higher resolution DEMs could improve the results.

Compared with original Landsat series images (Landsat TM-5 and OLI-8), the topographically
corrected images produce better forest classifications, which can be seen from the increase in overall
accuracies and Kappa coefficient in the RF classifier. For Landsat TM-5, the SEC method improved
classification accuracy by around 3.97%, while for Landsat OLI-8 the accuracy improvement was
around 1.32%.

On the basis of this study, it is expected that advanced topographic corrections and machine
learning RF classifier can be implemented within the sustainable mapping and monitoring of forest
species in complex mountainous terrain. The main finding of the present study is that the newly
available SRTM 30 m × 30 m DEM can be effectively used for the topographic correction of Landsat
TM-5 and OLI-8 data for forest mapping studies in mountainous terrain.

Future research should focus on the application of topographic correction and classification to
multitemporal imagery. The forest classification could also be further improved within heterogeneous
forest types. The forest classification approach presented here can be used to improve accuracy across
a variety of forestry applications such as forest type classification, forest species-based biomass or
carbon estimation, and the monitoring of changes in forest species composition on larger scales.
The application of newly available (ALOS) World 3D DEM is also recommended for future work [70].
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